
REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID
USING ADDITIVE VARIANTS

PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Abstract. Algebraic multigrid (AMG) has proven to be an effective scalable solver
on many high performance computers, however its increasing communication com-
plexity on coarser levels has shown to seriously impact its performance on com-
puters with high communication cost. Additive AMG variants provide increased
parallelism as well as decreased numbers of messages per cycle, but can also lead
to decreased convergence. We present various new additive variants with conver-
gence rates that are signifcantly improved compared to the classical additive alge-
braic multigrid and investigate their potential for decreased communication, and
improved communication/computation overlap, features that are essential for good
performance on exascale architectures.

1. Introduction

Algebraic multigrid (AMG) is a popular solver for large-scale scientific comput-
ing and an essential component of many simulation codes. AMG has shown to be
extremely efficient on distributed memory architectures [3, 4]. However, with single-
core speeds plateauing, future increases in computing performance have to rely on
increased concurrency provided by the architecture, leading to potentially billions of
cores or threads. Applications have to match this increased level of concurrency to
exploit the performance potential and hence face additional communication require-
ments. Future systems will also be subject to strict power limitations for overall
system power, and data movement, which includes communication, is responsible for
a majority of the power consumed in a system. Therefore to address these challenges,
increased parallelism and reduced availibility of power, and to successfully exploit
future architectures, it is crucial to develop algorithms with reduced communication.
Such an algorithm will consume less power, and its performance will be less affected
by a reduction in power.

AMG obtains its optimal computation complexity by using smaller coarse grid
problems to approximate the solution of the original fine grid problem. For tradi-
tional, matrix-based AMG with Galerkin or variational coarsening, which we consider
here, the number of nonzeros per row for the coarse grid operators grows, and with
it the number of neighbor processes. The communication complexity increases sig-
nificantly, leading to a large number of messages. Contention at these levels can lead
to a significant decrease in performance and scalability on current architectures with
slower networks [5, 12] and is expected to be a bottleneck for future exascale machines.
To counter the high communication complexities at the coarse levels, new variants
with reduced communication complexity and improved communication-computation

1

2 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

overlap are needed. It is in this context that we revisit additive versions of multigrid
methods.

Additive multigrid methods were originally developed in the eighties [14, 6] to
increase parallelism within multigrid. Theoretical and practical investigations showed
however that additive multigrid converges signicifantly slower than multiplicative
multigrid and so erased any gains in time improvements [1]. Chan and Tuminaro
[7, 8, 21] improved convergence of the additive formulation through the introduction
of filtering operators. However the additional cost of the filtering operators eliminated
the gains in improved convergence [18]. Fournier and Lanteri [13] were able to achieve
modest performance improvements using a modified version of filtering multigrid on
the two coarsest levels of the grid hierarchy for compressible flow computations.

We investigate here an additive AMG variant, which exhibits identical conver-
gence behavior to multiplicative AMG (see Section 5.7.2 in [23]), and several new
variants of this method, that are less expensive, but still exhibit very good conver-
gence properties. We analyze their computational and communication cost as well
as memory requirements. We demonstrate improved solve times for the new variants
over multiplicative AMG on a parallel Linux cluster at Lawrence Livermore National
Laboratory. The results show that several of the new AMG variants are effective at
aleviating the difficulties caused by the increased size of coarse-grid stencils typical
for variational or Galerkin coarsening in traditional (i.e., matrix-based only) AMG.

2. The V -cycle revisited: multiplicative and additive versions

Let A be a given sparse n × n symmetric positive definite (s.p.d.) matrix, and

M a given A–convergent smoother, i.e., ‖I − M−1A‖A = ‖I − A
1
2 M−1A

1
2‖ < 1, or

equivalently, M + MT − A to be s.p.d.
We assume that M−1 is a sparse matrix, for example a diagonal matrix, or a

polynomial in terms of a diagonal matrix times A.
We generate a hierarchy of coarse level matrices Ak based on a sequence of inter-

polation matrices P k
k+1 of size nk × nk+1, k = 0, . . . , `. Here, n0 = n and nk+1 < nk.

Also, with A0 = A, we have

Ak+1 = (P k
k+1)

T AkP
k
k+1 for k = 0, . . . , `− 1.

Finally, let Mk be an Ak–convergent smoother for Ak. We assume for a later pur-
pose that M−1

k is sparse, in the simplest case a diagonal matrix. We also need the
symmetrized smoothers

(2.1) Mk = Mk

(
Mk + MT

k − Ak

)−1
MT

k .

A multiplicative, symmetric V (1, 1)–cycle operator B = B0 is defined by recursion
as follows:

• B` = A−1
` .

• For k < `, assuming that Bk+1 has been defined, we define

(2.2) Bk = M
−1

k + (I −M−T
k Ak)P

k
k+1Bk+1(P

k
k+1)

T (I − AkM
−1
k).

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS 3

Formula (2.2) follows from the more familiar product iteration formula

(2.3) I −BkAk = (I −M−T
k Ak)

(
I − P k

k+1Bk+1

(
P k

k+1

)T
Ak

)
(I −M−1

k Ak),

which represents the fact that the error propagation matrix at level k is a product of
the pre-smoothing iteration with Mk represented by the term I−M−1

k Ak, coarse-grid

correction corresponding to I − P k
k+1Bk+1

(
P k

k+1

)T
Ak which involves restriction with(

P k
k+1

)T
, application of Bk+1 (defined recursively), and interpolation with P k

k+1, and

finally post-smoothing iteration with MT
k giving rise to the last term I−M−T

k Ak. To
prove (2.2) from (2.3), we use (2.1), or more specifically the identity

I −M
−1

k Ak = (I −M−T
k Ak)(I −M−1

k Ak).

For the actual details, we refer to [23], Section 5.1.
We also note that we use both Mk and MT

k in the definition of the V-cycle oper-
ator which makes it symmetric (and positive definite if Mk is Ak-convergent), hence
suitable for preconditioning in the conjugate gradient (or CG) method. For example,
if Mk corresponds to forward Gauss-Seidel, i.e., Mk = Dk + Lk, where Dk is the
diagonal of Ak and Lk the strictly lower-triangular part of Ak, then MT

k = Dk + LT
k

corresponds to the backward Gauss–Seidel smoothing process.

Modified interpolation matrices and smoothers. Having constructed or avail-
able the operators:

• hierarchy of matrices {Ak}`
k=0,

• smoothers {Mk}`−1
k=0, and

• two-level interpolation matrices {P k
k+1}`−1

k=0,

that define a (symmetric) V (1, 1)-cycle, we can construct the following modified op-
erators:

• For k = 0, . . . , `− 1 form the “smoothed” two-level interpolants:

P
k

k+1 = (I −M−T
k Ak)P

k
k+1.

Under the assumption that M−1
k is sparse, we can expect that P

k

k+1 is also
sparse and hence can be explicitly formed and stored.

• Form the inverses of the symmetrized smoothers, i.e.,

Λk =
(
Mk

)−1

= M−T
k

(
Mk + MT

k − Ak

)
M−1

k

= M−1
k + M−T

k −M−T
k AkM

−1
k .

Again, under the assumption that M−1
k is sparse, we can expect that Λk is

also sparse and hence can be explicitly formed and stored.
• Define Λ` = A−1

` .

4 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Additive representation of symmetric V (1, 1)–cycle. Based on the recursive
definition (2.2), using the newly introduced parameters, we have

Bk = M
−1

k + (I −M−T
k Ak)P

k
k+1Bk+1(P

k
k+1)

T (I − AkM
−1
k)

= Λk + P
k

k+1Bk+1

(
P

k

k+1

)T

= Λk +
∑

j=k+1, ..., `

P
k

j Λj

(
P

k

j

)T

.

Above, we have used the composite interpolants for any j > k,

(2.4) P
k

j = P
k

k+1P
k+1

k+2 . . . P
j−1

j .

We let P
k

k = I.

Then, for k = 0, we have (with P j = P
0

j)

(2.5) B =
∑

j=`, `−1, ..., 0

P jΛj

(
P j

)T
.

The last identity represents the additive representation of the multiplicative V -cycle
that is found in [23], Section 5.7.2. It is mathematically equivalent to the original
multiplicative V -cycle.

We now recall the definition of the classical additive MG method, also referred to
as BPX [6]. Introduce the composite interpolants from coarse level j all the way up
to the finest level,

Pj = P 0
1 P 1

2 . . . P j−1
j , 1 ≤ j ≤ `, (P0 = I).

For any given s.p.d. smoothers Λj, for example Λ−1
j = M j, we form the additive MG

(or BPX) operator

(2.6) Badd =
∑

j=0, ..., `

PjΛjP
T
j ,

where typically Λ` = A−1
` . We notice the similarity with formula (2.5); the difference

is in the interpolation operators used; the BPX method uses the standard interpo-
lation operators Pj, whereas in (2.5), the product of the smoothed out interpolation
matrices are employed. Also, Badd, unless properly scaled, is generally not a conver-
gent method for solving Ax = b, hence it is typically used as a preconditioner in
the CG method. While the BPX method provides a spectrally equivalent precondi-
tioner for matrices A that have been constructed by finite elements and successive
geometric refinement applied to 2nd order elliptic equations, it converges significantly
slower than the corresponding multiplicative method with the same smoothers and
interpolation matrices.

In the s.p.d. case, assuming A-convergent smoothers, as is well-known, the V -cycle
operator B provides a convergent iteration, i.e., we have the inequalities

0 < vT Bv ≤ vT A−1v, for all v.

Based on (2.5), the following result is readily seen.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS 5

Proposition 2.1. Assume that the smoothing operators Λj are replaced by s.p.d.
approximations Λj such that

vT
j Λjvj ≥ vT

j Λjvj for all vj.

Then, the modified additive operator

(2.7) B =
∑

j=`, `−1, ..., 0

P jΛj

(
P j

)T
.

also provides a convergent method for A.

Proof. The proof is readily seen since by construction B is s.p.d., and also by the
properties of Λj, we have

0 ≤ vT Bv ≤ vT Bv ≤ vT A−1v, for all v.

The latter inequalities imply

0 ≤ vT A(I −BA)v ≤ vT A(I −BA)v ≤
(
1− λmin(AB)

)
vT Av,

which shows the desired convergence property of B. �

As a corollary, in the case of s.p.d. smoothers, where Mj = MT
j , we get

Λj = 2M−1
j −M−1

j AjM
−1
j .

Assuming that

(2.8) vT
j Mjvj ≥ vT

j Ajvj for all vj,

it is easily seen that we have

vT
j Λjvj = vT

j (2M−1
j −M−1

j AjM
−1
j)vj ≥ vT

j M−1
j vj, for all vj.

Therefore, we can let

Λj = M−1
j ,

and then based on formula (2.7), it follows that the modified additive version of the
V -cycle

B =
∑

j=`, `−1, ..., 0

P jΛj

(
P j

)T
=

∑
j=`, `−1, ..., 0

P jM
−1
j

(
P j

)T
,

provides a convergent method. The latter fact is particularly attractive in the case
when Mj is a diagonal matrix, as is the case of the `1 Jacobi smoother that we
investigate in the following sections. Note that at fine levels we may keep Λj = Λj

and use approximation only at coarse levels.
Other ways to define sparser approximations to B, that are exploited in this paper

are to utilize truncation of the smoothed interpolation operators P
k

k+1. Our tests
confirm that the resulting approximation to B is convergent for moderate truncation.

6 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Multiplicative Version Additive Version
r0 = b r0 = b

For k = 0, ..., `− 1 (sequential) For k = 0, ..., `− 1 (sequential)

xk = M−1
k rk rk+1 = (P

k

k+1)
T rk

rk+1 = (P k
k+1)

T (rk − Akxk)

For k = 0, ..., `− 1 (parallel)
xk = M−1

k rk

xk := xk + M−T
k (rk − Akxk)

Solve A`x` = r` Solve A`x` = r`

For k = `− 1, ..., 0 (sequential) For k = `− 1, ..., 0 (sequential)

xk := xk + P k
k+1xk+1 xk := xk + P

k

k+1xk+1

xk := xk + M−T
k (rk − Akxk)

Table 1: Multiplicative and additive formulation of an AMG V-cycle, when used as
a preconditioner, i.e. x0 = 0. We also take advantage of the fact that xk = 0, k =
1, ..., `− 1 at the beginning of each level.

3. Implementation Details and Cost Analysis

We will now consider the implementation cost of both the multiplicative and addi-
tive implementation of the AMG V-cycle. Since we generally use AMG as a precondi-
tioner, i.e. we perform one cycle of AMG with x0 = 0 in each iteration of an iterative
solver such as conjugate gradient or GMRES, we list both versions when used as a
preconditioner in Table 1.

Note that in our implementation we take advantage of the fact that at the beginning
of each level xk = 0, k = 0, ..., `− 1. Therefore

xk := xk + M−1
k (rk − Axk)

can be replaced with

xk = M−1
k rk.

The smoothing step in the additive V-cycle

(3.1) xk = M−1
k rk, xk := xk + M−T

k (rk − Akxk)

is equivalent to

(3.2) xk = Λkrk,

where

(3.3) Λk = M−T
k (Mk + MT

k − Ak)M
−1
k .

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS 7

Both formulations will be of interest when used with different smoothers. We will
also investigate the variant, in which Λk is approximated with

(3.4) Λk = M−1
k ,

for smoothers Mk that are s.p.d. and satisfy vT
k Mkvk ≥ vT Akvk, i.e., estimate (2.8),

which is required in the corollary after Proposition 2.1. That is, steps (3.1), as
combined in (3.2), are replaced with

(3.5) xk = Λkrk = M−1
k rk.

From here on, we will refer to the classical additive algorithm (corresponding to

(2.6)), which uses the unsmoothed interpolation, P
k

k+1 = P k
k+1, in Table 1 as addi-

tive AMG, the additive formulation with smoothed interpolation (corresponding to
(2.5)) as mult-additive AMG, and the algorithm with (3.4) (corresponding to (2.7))
as simplified mult-additive AMG. Note that classical additive AMG is not equivalent
to multiplicative AMG.

Communication cost analysis. We assume that the application of M−1
k and M−T

k

requires no communication. This is a reasonable assumption since it holds for various
smoothers that are often used in practice, such as weighted Jacobi or any other
diagonal smoother as well as for the hybrid Gauss-Seidel (for the latter smoother see,
e.g., [2]).

Then for the multiplicative cycle, communication is required for two matrix-vector
multiplications for Ak, one for P k

k+1 and one for its transpose on each level k. For
the additive and mult-additive approach, only one multiplication with Ak as well as

multiplications with P
k

k+1 and its transpose are required per level. The simplified
mult-additive V-cycle avoids all communications for Ak. Since additive AMG uses
the unsmoothed interpolation, one additive AMG cycle requires one less matrix-
vector multiplication with Ak than the multiplicative AMG cycle and consequently
less communication. For the mult-additive variant and the simplified version, it is
more complicated to compare their communication cost to that of multiplicative AG,

since it depends on the smoothed interpolation operator P
k

k+1, which has a larger
stencil and requires more communication than the original interpolation. We will
further investigate this in Section 4. Additionally due to the fact that smoothing on
all levels can now be performed in parallel, it is possible to combine the communication
of all levels leading to a reduction of the number of messages for all three approaches.

Memory and number of operations analysis. Besides communication, it is also
of interest to see the impact of the changes on memory usage and number of opera-
tions. In order to get some actual estimates it is necessary to specify the smoothers.

We will consider here `1 smoothers (introduced in [17] and available in hypre),
since AMG with `1 smoothing always converges, if the original matrix A is s.p.d. (cf.
e.g., [2]).

8 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

The simplest `1 smoother is `1 Jacobi, where M is a diagonal matrix D̃ with
diagonal elements

(3.6) d̃ii =
n∑

j=1

|aij|,

for an n × n matrix A. Note that the `1 Jacobi smoother is s.p.d. and fulfills
vT D̃v ≥ vT Av and is therefore a good choice for the simplified mult-additive approach.

We will also consider `1 Gauss-Seidel, which generally leads to better convergence
than `1 Jacobi. To define `1 Gauss-Seidel, we partition A into k × k blocks, which
do not have to be of the same size. Let Amm be the mth diagonal block of A, which
is decomposed into Amm = Lmm + Dmm + Umm, where Lmm is the lower triangular
and Umm the upper triangular portion of Amm. We define MH as the block diagonal
matrix with (MH)mm = Lmm + Dmm. The `1 Gauss-Seidel smoother is defined as

(3.7) M`1 = MH + D`1 ,

where D`1 is a diagonal matrix with entries

(3.8) (d`1)
m
ii =

∑
j∈Ωm

o

|aij|,

and Ωm
o is the column index set outside of the block Amm. Generally the blocks

are chosen according to the partitioning across cores, however we will also consider
smaller block sizes.

We first investigate the mult-additive approach with `1 Jacobi smoothing, which
is of interest due to its simplicity and its large degree of parallelism. Many of our
conclusions, although not all of them, will also carry over to `1 Gauss-Seidel.

Use of `1 Jacobi smoothing. The additive V-cycle with Jacobi smoothing can be
implemented very efficiently by taking advantage of (3.2). Since Mk is a diagonal
matrix D̃k, it follows that

(3.9) Λk = 2D̃−1
k − D̃−1

k AkD̃
−1
k .

The explicit computation of Λk is fairly cheap, and Λk has the same data struc-
ture as Ak. Additionally the matrix vector multiplications (3.2) on all levels can be
combined into one large matrix vector multiplication

(3.10) x̃ = Λr̃,

leading to a reduced number of messages.
Table 2 shows the memory usage and matrix-vector multiplications required for

V-cycles of various variants when using Jacobi-smoothing. For the additive and
mult-additive approach, Ak, k = 1, ..., ` and P k

k+1, k = 0, ..., ` − 1 can be discarded

immediately after computing Λk and P
k

k+1, since they are no longer needed. (We list
Λk as Ak, since they have the same data structure.) We however need to keep the
original matrix A0, which is needed in the solver if we use AMG as a preconditioner.
Note that the computation of Λk and the extra storage of Λ0 can be avoided if one
implements (3.1) instead of (3.2) at the cost of extra flops. Finally, in the simplified

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS 9

multiplicative additive mult-additive simplified
`−1∑
k=0

[nnz(Ak)
`−1∑
k=0

[nnz(Ak)
`−1∑
k=0

[nnz(Ak)
`−1∑
k=0

[nnz(P
k

k+1)

memory +nnz(P k
k+1)] +nnz(P k

k+1)] +nnz(P
k

k+1)] {+nnz(Ak+1)}]
+nnz(A0) +nnz(A0) +nnz(A0)

MatVecs
`−1∑
k=0

[2MV (Ak)
`−1∑
k=0

[MV (Ak)
`−1∑
k=0

[MV (Ak)
`−1∑
k=0

2MV (P
k

k+1)

+2MV (P k
k+1)] +2MV (P k

k+1)] +2MV (P
k

k+1)]

Table 2: Memory usage and matrix-vector multiplications in a V-cycle when using
Jacobi smoothing. The terms in curly brackets can be discarded in the setup phase
and are not needed during the solve phase.

version, it is possible to discard all Ak, k = 1, ...`, since they are no longer needed
after smoothing the interpolation.

4. Comparison of variants relative to multiplicative V-cycle

In order to compare the V-cycles of the variants to that of the multiplicative
method, we compute change factors for memory and flops by dividing the values
for each of the additive variants by those of the multiplicative variant. Change fac-
tors for memory and flops are evaluated based on the numbers given in Table 2, when
using Jacobi smoothing. The terms in curly brackets refer to matrices that can be
discarded after the setup and are no longer needed in the solve phase. We include
these terms however in the memory change factors that we present. For the number
of messages and the amount of data sent, we used the average number of messages
and amount of data sent per core obtained in the test runs. We then divided the
values for each of the additive variants by those of the multiplicative variant. There-
fore, quantities with a change factor smaller than 1 indicate an improvement of the
V-cycle of the new method over the multiplicative V-cycle. Since we generally use
AMG as a preconditioner, we assumed that x0 = 0, and therefore did not include the
computation of Ax0 in the computation of the change factors. Note that generating
Λk and the smoothed interpolation is not considered here, since it occurs during the
setup phase ileading to an increase in setup times. We will comment on this in Section
5.

We implemented the mult-additive AMG variant with `1 Jacobi smoothing in the
linear solvers library hypre [15] and applied them to a 3-dimensional (3D) 7-point
Laplace problem on a cube with 50 × 50 × 50 variables per core using HMIS coarsen-
ing [9], ext+i interpolation [10] truncated to at most 4 elements per row and one level
of aggressive coarsening [20, 24]. This combination of coarsening and interpolation
often leads to the fastest solution when using hypre’s AMG solver BoomerAMG.

In Table 3, we have listed the change factors for the mult-additive over the mul-
tiplicative approach, varying the number of cores. We see a significant increase in
memory, mainly caused by the fact that we keep the original matrix as well as Λ0.

10 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

no of cores Memory flops no messages data sent
64 2.203 1.013 0.712 0.670
512 2.206 1.016 1.169 0.688
4096 2.207 1.012 1.655 0.727

Table 3: Change factors for various quantities for mult-additive / multiplicative ap-
proach. Factors < 1 are good.

There is an additional, but less significant increase caused by the smoothed inter-
polant. We see a small increase in flops, which is of no concern, since we expect
flops to be cheap on future exascale computers. For this method, there is no need
to consider convergence, since it uses exactly the same number of iterations as mul-
tiplicative AMG. The amount of data sent across cores decreases, which is positive,
since data movement is expensive. However, it appears that there is a tendency of
slight increase when increasing the number of cores. More importantly, there is a
significant increase in the number of messages sent, caused by the increased stencil
size of the smoothed interpolation operators. We can reduce this effect by truncating
interpolation which, however, we expect to affect convergence. We investigate this in
the following section.

Truncating the smoothed interpolation matrix. In order to reduce the increase

in number of nonzeros in P
k

k+1, we consider truncating this matrix. There are essen-
tially two ways we can truncate interpolation operators: we can choose a truncation
factor θ and eliminate every weight whose absolute value is smaller than this factor,

i.e. for which |(P k

k+1)ij| < θ [20], or we can limit the number of coefficients per row,
i.e. choose only the kmax largest weights in absolute value. In both cases the new
weights need to be rescaled so that the row sums remain unchanged.

We vary the numbers for both truncation strategies for the 7-point 3D Laplace test
problems using 4096 processes. We also investigate a 3D diffusion problem with a 27-
point stencil to see the effects on a larger stencil. The results are illustrated in Figure
1, where ‘msg’ denotes the change factor for the number of messages, ‘data’ for the
amount of data sent and ‘flops’ the change in the amount of operations. Solid lines
illustrate results for the 7-point stencil, and dashed lines those for the 27-point stencil.
Results per cycle, as well as change factors adjusted for the increase in iterations are
presented. For the adjustment, we multiply the change factors with the number of
iterations of the new method divided by the number of iterations for the multiplicative
cycle to adjust for the increase in iterations.

The change factors for a cycle show good improvement when increasing the trun-
cation factor or decreasing the maximal number of elements per row. However, the
picture changes when one adjusts for the increase in iterations. As expected, if one
truncates too much, the increasing number of iterations quickly erases any potential
gains and leads to on overall worse method. For the considered problems, a 7-point
and a 27-point stencil with 50×50×50 grid points per core, a good truncation factor
is 0.025, or restricting the number of nonzeros per row to at about 8. We see that

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS11

Figure 1: Effect of truncation of smoothed interpolation on communication and num-
ber of flops for a system with a 7-point and a 27-point stencil, using 4096 cores.

the change factor for the number of messages now drops slightly below 1, the other
change factors also improve somewhat. Note also that for the 27-point stencil there
is a significant decrease in flops.

Note that we found kmax = 8 and θ = 0.025 also to be the values that generally led
to the best solve times for the test problems considered in Section 5. The development
of a procedure to automatically determine the optimal values is a topic of future
research.

Performance profiling of V-cycles. It is of interest to look at performance profiles
of the V-cycles to see how much time is spent in computation and communication as
well as whether there is any overlap. Note that matrix-vector multiplications have
been implemented in such a way that communication to send and receive off processor
data is started first using non-blocking sends and receives, so that the local portion
of the matrix vector multiplication can be computed at the same time while data is
being sent. The off processor portion is computed as soon as the needed data has
arrived. We used Vampir [22] to generate performance profiles of the multiplicative,
the additive and the mult-additive V-cycle using smoothed interpolation truncated
to at most 8 elements per row on 64 cores of the Linux cluster Hera at LLNL. The
timeline for each individual process is colored green to mark time spent for performing

12 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

computation and white for idle time. Communication is marked by black lines leading
from one process to the next.

Results for a 3D 7-point Laplace problem with 40 × 40 × 40 grid points per core
are illustrated in Figure 2. The widths of the profiles were adjusted for the actual
times spent, indicating that the additive cycle is the fastest, and the multiplicative
cycle the slowest. For the multiplicative approach there is initial good computation-
communication overlap on the finest level as can be seen on the left and the right
side of the top profile. There is however significant contention at the coarser levels
where computation time is very small in comparison to communication time. For
the additive and the mult-additive method, where smoothing is replaced by one large
matrix-vector multiplication, one can see good overlap of computation and communi-
cation for the smoothing in the center of the profiles. As expected the mult-additive
cycle with truncated interpolation is more expensive and requires more communi-
cation than the additive cycle, but it also shows good overlap, and its significantly
faster convergence leads to overall better solve times. We do not show a profile of the
simplified version, however for its truncated version the center profile in the bottom
performance profile would just be replaced by a very small green band for the multi-
plication with the inverse of the diagonal matrix, which requires no communication.

Switching to additive variants at coarser levels. Since the contention we ob-
served is mainly at the coarser levels, it is of interest to investigate whether it is
beneficial to start the new approaches at later levels. Based on the results in the
previous section, we include two mult-additive variants with truncation, one using a
truncation factor of 0.025, denoted ‘ma tr 0.025’, and a second one in which we trun-
cate the smoothed interpolation matrix to at most 8 coefficients per row, denoted ‘ma
Pmx 8’. We also include a simplified method denoted with ‘s-m-a’ and its truncated
version ‘sma Pmx 8’. We now investigate the effect of starting the various approaches
at later levels of the AMG hierarchy, and using the multiplicative approach at the
finer levels above the switch level.

Figure 3 shows the number of iterations as well as the change factors for memory,
number of messages, amount of data sent as well as flops, for both a 7-point and a
27-point stencil. We did not include the results for the number of iterations and the
amount of data sent for the 27-point stencil, since the results for the 7-point stencil
are representative for the 27-point stencil as well. The fine matrix with a 7-point
stencil is relatively small compared to problems with larger stencils, and therefore we
do not see the large reduction in flops seen for the 27-point stencil at the finest level.
The effect is even more pronounced since we use aggressive coarsening on the finest
level.

The truncated versions show good convergence, whereas the simplified versions
converge slower, but still significantly better than the additive method. The amount
of memory needed decreases significantly when starting the mult-additive or additive
method at a later level. The simplified versions require much less memory when
started at the finest level. Note that if we choose the less efficient implementation
and do not evaluate Λ0, memory usage for the mult-additive methods drops to that

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS13

Figure 2: Performance profiles of one AMG cycle with Jacobi smoothing using various
AMG variants, showing portions of computation, idle time and MPI calls, using 64
cores. Green: computation, white: idle time, black: MPI calls

of the simplified methods, and memory usage for the additive method is equivalent
to that of the multiplicative method.

The results show that for all methods except additive AMG, there is a very slight
increase in the change factor for the number of messages when increasing the level at
which the method is started. For the truncated mult-additive methods it stays below
or around 1, and for the truncated simplified method it is clearly below 1 in the case
of the 27-point stencil, but around 1 at level 0 and then clearly above 1 in the case
of the 7-point stencil. For the additive method it starts to drop below 1 around level
2 and continues decreasing as the number of iterations decreases. For the additive
method the amount of data sent as well as the number of operations stay above 1,
for most of the other methods they are clearly below 1 at level 0, especially for the
27-point stencil, but increase at later levels. They are significantly reduced for the
simplified methods at level 0.

Overall, the truncated simplified method leads to the best communication savings
if started at level 0, in spite of the increased number of iterations.

14 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Figure 3: Effect of starting various versions at different levels - using 4096 cores.
Change factors for flops, number of messages and amount of data sent were adjusted
to reflect the change in number of iterations.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS15

7-point stencil 27-point stencil
n mult-additive Pmx 8 tr 0.025 mult-additive Pmx 8 tr 0.025
20 21.79 1.54 (20.73) 1.63 5.40 1.22 (5.42) 1.16
30 53.46 1.54 (50.67) 1.66 11.77 1.21 (11.77) 1.16
40 107.39 1.54 (101.69) 1.68 22.99 1.21 (22.90) 1.17

Table 4: Increase in memory uisng mult-additive approach over multiplicative ap-
proach with `1 Gauss-Seidel smoothing on 64 cores using n × n × n grid points per
core, (numbers in parentheses is temporary memory increase during setup)

7-point stencil 27-point stencil
`GS mult-additive Pmx 8 tr 0.025 mult-additive Pmx 8 tr 0.025
0 53.46 1.54 (50.67) 1.66 11.77 1.21 (11.77) 1.16
1 3.97 1.04 (3.80) 1.12 1.07 1.00 (1.06) 1.01
2 1.19 1.01 (1.19) 1.02 1.01 1.00 (1.01) 1.00

Table 5: Increase in memory using mult-additive approach over multiplicative ap-
proach with `1 Gauss-Seidel smoothing on 64 cores using 30× 30× 30 grid points per
core, starting at different levels `GS (numbers in parentheses is temporary memory
increase during setup)

Using `1 Gauss-Seidel as a smoother. Since Gauss-Seidel smoothing generally
converges faster than Jacobi and is often used in practice, we also want to investigate
it in the present context. At first view, it does not appear to be a suitable smoother
here, since using it to smooth the interpolation will significantly increase the density
of the smoothed interpolation, and require much more memory. While this can be
mitigated by applying truncation again, one needs to truncate a lot more, which
could lead to much worse convergence. Also, we need to first generate the smoothed
interpolation, before we can truncate it. This requires temporary storage during the
setup time, which can be just as expensive. Table 4 gives some data showing the
extreme increase in memory required.

These memory requirements can be significantly decreased when starting at a later
level. Memory increases for n = 30 are given in Table 5.

Another disadvantage of using an `1 Gauss-Seidel smoother is the fact that the
algorithm is highly sequential within a core, thus preventing the overlap of com-
munication and computation that were achieved using Jacobi smoothing. This lack
of overlap is demonstrated in the performance profile of the additive V-Cycle using
hybrid Gauss-Seidel in the center of Figure 4.

Computation-communication overlap can be achieved with a block `1 Gauss-Seidel
with several smaller blocks per core. Now the portion outside the blocks, but local to
the core, can be computed while communicating data, and the remaining local portion
as well as the off processor portion of the smoothing step can be finalized once the data

16 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Figure 4: Performance profile of one AMG cycle with `1 Gauss-Seidel smoothing
using various AMG variants, showing portions of computation, idle time and MPI
calls, using 64 cores. Green: computation, white: idle time, black: MPI calls

have been received. The improved overlap is demonstrated in the bottom performance
profile of Figure 4, for a block size of 20 and a truncated smoothed interpolation.

The block `1 Gauss-Seidel also can significantly reduce memory requirements, es-
pecially when the block sizes are small, since now the nonzero portion of M−1

k is also
much smaller. There is also increased parallelism in the setup, which an efficient
implementation can take advantage of.

It is also possible to consider a simplified version here, however Mk is not s.p.d.,
and therefore Proposition 2.1 does not apply. Also, we generally use AMG as a
preconditioner for CG, which requires a symmetric smoother. We tried to use M−1

k

and wrapped restarted GMRES around it, and obtained fairly good convergence. We
also used block symmetric `1 Gauss-Seidel and wrapped conjugate gradient around
it. We got better convergence than with the `1 Jacobi approach, but the overall times
were slower.

5. Numerical Experimentss

We tested the variants descibed in the previous sections on a variety of test prob-
lems, which are described below.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS17

Figure 5: A coarse version of the unstructured mesh on the Fichera domain using
quadratic (left) or cubic (right) finite elements.

Figure 6: A coarse version of the unstructured mesh used for problem U-Jumps, with
the two material subdomains shown on the right.

Test problems. We consider two structured problems and four unstructured prob-
lems. All problems with the exception of Problem 2 solve the scalar diffusion problem

−∇ · (a(x, y, z)∇u) = f,

with a(x, y, z) = 1 for Problems 1, 3, 4, and 5. Problems 3 through 6 were discretized
using the MFEM finite element package [19].

Problem 1: S-7pt - This is 7-point 3D Laplace problem on a cube generated by
finite differences using 50× 50× 50 grid points per core.

Problem 2: S-27pt - This is a 3D problem with a 27-point stencil on a cube using
50× 50× 50 grid points per core.

Problem 3: U-Cube - This is a 3D unstructured Laplace problem on a cube with
tetrahedral elements.

Problem 4: U-Quadratic - This is a 3D unstructured Laplace problem with qua-
dratic finite elements on the Fichera domain illustrated in Figure 5.

Problem 5: U-Cubic - This is a 3D unstructured Laplace problem with cubic
finite elements on the Fichera domain illustrated in Figure 5.

Problem 6: U-Jumps - This is a 3D unstructured diffusion problem on a sphere
with trilinear hexahedral finite elements. It contains two material subdomains, with
a(x, y, z) = 1 and a(x, y, z) = 1000. The domains are illustrated in Figure 6.

Implementation and experiment details. The various V-cycles were implemented
in the BoomerAMG code [16] in the hypre library [15], however in order to have a
fair comparison, we also rewrote the multiplicative V-cycle. We took advantage of
the fact that xk = 0 wherever feasible, including the finest level, since AMG was
used here as a preconditioner for CG. This led to savings in communication for all

18 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

smoothers, and savings in flops for `1 Jacobi smoothing as well as for `1 Gauss-Seidel
smoothing with small blocks, mostly on the finest level. The matrix data structure
(ParCSR) consists of two matrices stored in CSR format, one for the local portion
and one for the off processor part [11]. While we were able to save flops for `1 Ja-
cobi and `1 Gauss-Seidel with small blocks using xk = 0, there was no advantage
to do so for the full `1 Gauss-Seidel smoother, since it would have required to check
each index on whether it is in the lower or in the upper triangular part as well as
a full sweep of the matrix. For small block `1 Gauss-Seidel we changed the data
structure by splitting the local portion into two CSR matrices in order to generate
computation-communication overlap and avoid the inefficiency mentioned above.

All test runs were performed on Hera, a Linux cluster at LLNL, with a fat tree
network and a slow DDR interconnect. While on many current architectures multi-
plicative variants work well, we anticipate communication to be much more expensive
on future exascale computers, and therefore chose an architecture with a relatively
slow network, but fast cores, to demonstrate potential performance gains.

For all runs we used the settings in hypre that we recommend for 3-dimensional
problems and that generally obtain the fastest performance, i.e HMIS [9] with ex-
tended+i interpolation truncated to at most 4 elements per row [10], and one level of
aggressive coarsening with multipass interpolation [20, 24]. For the `1 Gauss-Seidel
smoother, we used the variant given in (6.5) in [2].

We use the systematic naming scheme ‘Variant.Level.Smoother’:

• ‘Variant’ defines the version used, and we use ‘mult’ for a multiplicative cycle,
‘add’, for a classical additive cycle, ‘ma’ for the mult-additive variant, ‘maP8’
for the mult-additive variant using a smoothed interpolation that has been
truncated to at most 8 nonzeroes per row, ‘matr’ for truncation with a factor
of 0.025, ‘sma’ for the simplified mult-additive version and ‘smaP8’ for the
truncated simplified version.

• ‘Level’ defines the first level (starting at ‘0’) at which the variant was used.
• For ‘Smoother’, ‘j’ stands for `1 Jacobi, ‘gs’ for `1 Gauss-Seidel, ‘gs20’ for `1

Gauss-Seidel using block sizes of at most 20, ‘gs1000’ for `1 Gauss-Seidel with
block sizes of 1000.

In Tables 6 through 11, we record number of iterations, memory usage, change
factors for number of messages, amount of data sent and flops, as well as cycle times.
For the methods using `1 Gauss-Seidel smoothing, the memory change factors in
parentheses indicate necessary memory increases during AMG setup. For the sake
of space, we listed change factors per cycle only, but since we give the number of
iterations, one can easily adjust for increased number of iterations. Note that number
of messages and amount of data is the same for a multiplicative V-cycle regardless
whether `1 Jacobi or Gauss-Seidel smoothing is used. While these numbers give an
idea of savings that can be obtained within a cycle, they do not take into account
additional effects on performance, such as communication-computation overlap as
well as cache use, nor consider the solver which is preconditioned by AMG. For the

Gauss-Seidel flops, we use
∑`−1

k=0(4nnz(Ak)+4nnz(P
k

k+1)) for the mult-additive cycle

and
∑`−1

k=0(4nnz(Ak) + 4nnz(P k
k+1)) for the additive and multiplicative cycle.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS19

Performance results. Figures 7 through 12 show the solve times we achieved for
all test problems. We present solve times only, since we have not investigated nor
used an efficient implementation of the setup, however we note here that computation
and communication increases during setup, and setup time can increase significantly,
particularly when using `1 Gauss-Seidel with large blocks starting on the finest level.
However, for Jacobi and Gauss-Seidel with small blocks, we observed that setup times
increased about 10-30 percent, when started on the finest level, and the increases
became insignificant on coarser levels. Note that it is possible to combine the coarse
grid generation (P k

k+1)
T AkP

k
k+1 with the generation of the smoothed interpolation

(I −M−T
k Ak)P

k
k+1 for a more efficient setup, which was not done in our experiments.

While the increase in setup times might make the methods less attractive, if only
one system is solved, this issue is less significant in applications where the same system
needs to be solved many times with different right hand sides, or in time stepping
algorithms where it is possible to reuse the preconditioner for many time steps.

In all figures, solid lines generally show timings for variants using `1 Gauss-Seidel
smoothing, whereas dashed, dotted and dash-dotted lines are used for Jacobi. For
all problems, the use of `1 Gauss-Seidel leads to better convergence than `1 Jacobi,
however generally one cycle with Jacobi is faster. Overall best cycle times are achieved
with smaP8.0.j. For most problems considered here maP8.0.j is faster than mult.gs,
and for all of them smaP8.0.j is faster than mult.gs in spite of its slower convergence.

For Problems S-7pt and S-27pt, we were unable to run maP8.0.gs, since we ran
out of memory during setup; however it led to generally good solve times for the
other problems, because of its good convergence. We achieved up to 50 percent
improved performance compared to mult.gs using maP8 starting on the finest level
using `1 Gauss-Seidel with block sizes of 20 or 1000. Convergence for both methods
was similar. Decreasing the block size leads to a decerease in convergence, but to
significantly improved memory usage and cycle efficiency. We obtained up to 80
percent improvement in speed compared to mult.gs and achieved a speedup of up to
2.5 compared to mult.j, using smaP8.

Overall, we found that starting maP8 and smaP8 at the finest level was faster
than starting at a later level. However for the classical additive method, we achieved
the best timings when starting at level 4. While in some cases the untruncated
mult-additive method performed better than the multiplicative method, truncating
the smoothed iterpolation always improved performance in spite of decreased conver-
gence.

6. Conclusions

We have investigated mult-additive AMG, a new additive AMG variant with con-
vergence properties equivalent to multiplicative AMG. Its improved convergence is
achieved by smoothing the interpolation operators. We also investigated a simplified
mult-additive method with potential for significant reduction in communication at
the expense of decreased convergence. Since the smoothed interpolation operators
can become quite expensive on the coarse grids, we introduce some new variants with
truncated smoothed interpolation operators. When choosing appropriate truncation
factors, these new methods only show a slight deterioration in convergence compared

20 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Variant iter. memory no. msgs data sent flops cycle time
mult.j 34 1.00 1.000 1.000 1.000 0.218
add.4.j 44 1.00 0.621 0.968 0.999 0.165
ma.0.j 34 2.21 1.655 0.727 1.017 0.204
ma.1.j 34 1.14 1.659 0.957 1.033 0.226
maP8.0.j 36 2.10 0.918 0.623 0.911 0.140
maP8.1.j 36 1.04 0.922 0.857 0.933 0.159
matr.0.j 35 2.15 0.953 0.621 0.889 0.144
matr.1.j 35 1.09 0.957 0.871 0.900 0.161
sma.0.j 44 1.41 1.477 0.298 0.620 0.161
sma.1.j 44 1.14 1.481 0.798 0.930 0.192
smaP8.0.j 44 1.31 0.725 0.193 0.514 0.099
smaP8.1.j 44 1.04 0.729 0.697 0.830 0.125
mult.gs 26 1.00 1.000 1.000 1.000 0.218
add.4.gs 29 1.00 0.621 0.968 0.999 0.166
ma.2.gs 26 1.66 1.678 0.996 1.445 0.240
maP8.1.gs 27 1.04(11.05) 0.915 0.857 0.952 0.164
maP8.2.gs 26 1.01(1.64) 0.935 0.924 0.974 0.168
maP8.0.gs20 28 1.51 0.911 0.622 1.081 0.157

Table 6: Various quantities for Problem S-7pt, using 4096 cores. Change factors for
no msgs, data sent, flops are given per cycle.

Figure 7: Solve times for Problem S-7pt.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS21

Variant iter. memory no. msgs data sent flops cycle time
mult.j 37 1.00 1.000 1.000 1.000 0.275
add.4.j 46 1.00 0.673 0.973 1.000 0.238
ma.0.j 37 2.07 1.603 0.647 0.671 0.227
ma.1.j 37 1.01 1.628 1.002 1.003 0.294
maP8.0.j 40 2.05 0.857 0.571 0.652 0.168
maP8.1.j 40 1.00 0.883 0.926 0.992 0.223
matr.0.j 40 2.01 0.920 0.581 0.612 0.173
matr.1.j 39 1.00 0.947 0.940 0.994 0.227
sma.0.j 44 1.14 1.431 0.186 0.207 0.182
sma.1.j 46 1.01 1.457 0.919 0.992 0.267
smaP8.0.j 44 1.12 0.679 0.110 0.187 0.119
smaP8.1.j 46 1.00 0.704 0.843 0.981 0.200
mult.gs 28 1.00 1.000 1.000 1.000 0.315
add.4.gs 30 1.00 0.673 0.973 1.000 0.282
ma.2.gs 28 1.02 1.653 1.017 1.014 0.280
maP8.1.gs 30 1.00(1.22) 0.876 0.928 0.995 0.266
maP8.2.gs 29 1.00(1.02) 0.901 0.951 0.998 0.271
maP8.0.gs20 33 1.18 0.851 0.571 0.807 0.186

Table 7: Various quantities for Problem S-27pt using 4096 cores. Change factors for
no msgs, data sent, flops are given per cycle.

Figure 8: Solve times for Problem S-27pt.

22 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Variant iter. memory no. msgs data sent flops cycle time
mult.j 48 1.00 1.000 1.000 1.000 0.151
add.4.j 56 1.00 0.670 0.967 1.000 0.106
ma.0.j 48 2.37 1.538 0.694 1.020 0.163
ma.1.j 48 1.11 1.568 0.953 1.028 0.168
maP8.0.j 51 2.18 0.869 0.577 0.834 0.099
maP8.1.j 51 1.02 0.892 0.843 0.932 0.100
sma.0.j 63 1.47 1.372 0.276 0.572 0.129
sma.1.j 53 1.12 1.395 0.803 0.941 0.138
smaP8.0.j 64 1.28 0.697 0.159 0.386 0.050
smaP8.1.j 52 1.02 0.720 0.693 0.845 0.069
mult.gs 31 1.00 1.000 1.000 1.000 0.163
add.4.gs 32 1.00 0.670 0.967 1.000 0.121
ma.2.gs 31 1.35 1.591 0.974 1.216 0.281
maP8.0.gs 33 1.31(9.08) 0.867 0.577 0.905 0.104
maP8.1.gs 32 1.02(3.28) 0.890 0.844 0.953 0.121
maP8.0.gs20 40 1.30(1.60) 0.868 0.577 0.895 0.093
maP8.0.gs1000 39 1.30(1.95) 0.867 0.577 0.899 0.092

Table 8: Various quantities for Problem U-Cube using 4096 cores. Change factors for
no msgs, data sent, flops are given per cycle.

Figure 9: Solve times for Problem U-Cube.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS23

Variant iter. memory no. msgs data sent flops cycle time
mult.j 33 1.00 1.000 1.000 1.000 0.197
add.4.j 39 1.00 0.733 0.982 1.000 0.167
ma.0.j 33 2.18 1.710 0.620 1.020 0.191
ma.1.j 33 1.02 1.740 0.982 1.028 0.212
maP8.0.j 35 2.05 1.006 0.538 0.604 0.119
maP8.1.j 35 1.00 1.036 0.912 0.986 0.147
sma.0.j 41 1.21 1.529 0.182 0.244 0.136
sma.1.j 36 1,02 1.559 0.893 0.985 0.186
smaP8.0.j 41 1.09 0.824 0.100 0.121 0.065
smaP8.1.j 35 1.00 0.854 0.823 0.969 0.116
mult.gs 21 1.00 1.000 1.000 1.000 0.234
add.4.gs 22 1.00 0.733 0.982 1.000 0.203
ma.2.gs 21 1.02 1.770 1.000 1.216 0.253
maP8.0.gs 21 1.09(12.78) 1.012 0.537 0.733 0.141
maP8.1.gs 21 1.00(1.21) 1.042 0.844 0.990 0.179
maP8.0.gs20 28 1.09(1.39) 1.012 0.538 0.733 0.124
maP8.0.gs1000 28 1.09(2.68) 1.012 0.539 0.733 0.126

Table 9: Various quantities for Problem U-Quadratic using 4096 cores. Change factors
for no msgs, data sent, flops are given per cycle.

Figure 10: Solve times for Problem U-Quadratic.

24 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

Variant iter. memory no. msgs data sent flops cycle time
mult.j 56 1.00 1.000 1.000 1.000 0.240
add.4.j 67 1.00 0.725 0.985 1.000 0.197
ma.0.j 56 2.25 1.418 0.630 0.767 0.217
ma.1.j 56 1.03 1.448 0.966 1.002 0.248
maP8.0.j 61 2.03 0.828 0.536 0.557 0.132
maP8.1.j 60 1.00 0.860 0.904 0.976 0.175
sma.0.j 74 1.26 1.247 0.174 0.275 0.158
sma.1.j 58 1.03 1.278 0.877 0.977 0.219
smaP8.0.j 74 1.05 0.658 0.080 0.064 0.075
smaP8.1.j 58 1.00 0.690 0.815 0.984 0.150
mult.gs 29 1.00 1.000 1.000 1.000 0.279
add.4.gs 30 1.00 0.725 0.985 1.000 0.240
ma.2.gs 29 1.03 1.479 0.984 1.017 0.301
maP8.0.gs 30 1.05(7.54) 0.867 0.539 0.703 0.171
maP8.1.gs 30 1.00(1.34) 0.862 0.904 0.984 0.220
maP8.0.gs20 42 1.05(1.35) 0.831 0.538 0.703 0.138
maP8.0.gs1000 41 1.05(2.51) 0.830 0.538 0.703 0.143

Table 10: Various quantities for Problem U-Cubic using 2048 cores. Change factors
for no msgs, data sent, flops are given per cycle.

Figure 11: Solve times for Problem U-Cubic.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS25

Variant iter. memory no. msgs data sent flops cycle time
mult.j 33 1.00 1.000 1.000 1.000 0.189
add.4.j 56 1.00 0.678 0.972 1.000 0.150
ma.0.j 33 2.27 1.706 0.693 0.889 0.198
ma.1.j 33 1.05 1.730 0.929 1.008 0.214
maP8.0.j 35 2.08 0.873 0.586 0.706 0.123
maP8.1.j 35 1.01 0.897 0.829 0.964 0.147
sma.0.j 43 1.35 1.524 0.281 0.430 0.148
sma.1.j 38 1.05 1.548 0.771 0.965 0.249
smaP8.0.j 43 1.17 0.691 0.173 0.247 0.068
smaP8.1.j 38 1.01 0.715 0.672 0.922 0.110
mult.gs 24 1.00 1.000 1.000 1.000 0.221
add.4.gs 26 1.00 0.678 0.972 1.000 0.181
ma.2.gs 24 1.10 1.752 0.980 1.058 0.247
maP8.0.gs 26 1.18(33.52) 0.874 0.583 0.806 0.146
maP8.1.gs 25 1.01(2.18) 0.898 0.829 0.976 0.178
maP8.0.gs20 29 1.17(1.53) 0.874 0.585 0.802 0.119
maP8.0.gs1000 29 1.17(2.25) 0.874 0.585 0.803 0.120

Table 11: Various quantities for Problem U-Jumps using 4096 cores. Change factors
for no msgs, data sent, flops are given per cycle.

Figure 12: Solve times for Problem U-Jump.

26 PANAYOT S. VASSILEVSKI AND ULRIKE MEIER YANG

to multiplicative multigrid, but converge significantly faster than additive multigrid.
We analyzed the communication and computation cost as well as memory require-
ments for a V-cycle of the new methods in comparison to muliplicative AMG for `1

Jacobi and `1 Gauss-Seidel smoothing. We also presented performance results for
several structured and unstructured problems. Use of Jacobi smoothing allows a very
efficient implementation of the smoothing step, with a large reduction in communica-
tion per V-cycle and much improved communication-computation overlap. However,
if one starts this approach at the finest level, memory requirements are increased by
a factor of two, but we have observed improvements in speed up to 60 percent. Best
performance was observed using the simplified approach which led to solve times im-
proved by a factor up to 2.5 for some problems. Use of `1 Gauss-Seidel gives overall
better convergence, but requires an unreasonable amount of memory during setup if
the block size is too large. If the block size equals the degrees of freedom per core,
it is also not possible to overlap computation and communication during smoothing.
Using a smaller block size significantly reduces memory requirements, allows overlap,
and leads to an efficient V-cycle. While convergence is impacted, this method still
converges significantly faster than additive AMG and achieves solve times that are up
to 50 percent faster than multiplicative AMG. The simplified approach has shown to
lead to even faster solve times for several problems in spite of its slower convergence.

7. Acknowledgments

We thank Tzanio Kolev for providing the unstructured test problems. Partial
support for this work was provided through Scientific Discovery through Advanced
Computing (SciDAC) program funded by U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research (and Basic Energy Sciences/Biological
and Environmental Research/High Energy Physics/Fusion Energy Sciences/Nuclear
Physics). This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344.

References

[1] P. Bastian, W. Hackbusch, and G. Wittum, “Additive and Multiplicative Multi-Grid – A Com-
parison,” Computing 60(1998), pp. 345-364.

[2] A. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Multigrid Smoothers for Ultraparallel
Computing,” SIAM J. Sci. Comput. 33(2011), pp. 2864-2887.

[3] A. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling hypre’s Multigrid solvers to
100,000 Cores,” in M. Berry, K. Gallivan, E. Gallopoulos, A. Grama, B. Philippe, Y. Saad and
F. Saied (eds.), High Performance Scientific Computing: algorithms and Applications, Springer
Verlag, 2012, pp. 261-279.

[4] A. Baker, T. Gamblin, M. Schulz and U. M. Yang, “Challenges of Scaling Algebraic Multigrid
across Modern Multicore Architectures,” in 25th IEEE International Symposium on Parallel
and Distributed Processing IPDPS 2011, Anchorage, AK, USA, 16-20 May, 2011 - Conference
Proceedings, IEEE, 2011, pp. 275-286.

[5] Baker A, Schulz M, Yang UM, On the Performance of an Algebraic Multigrid Solver on Multicore
Clusters, in VECPAR 2010, J. M. L. M. Palma et al. Eds. Lecture Notes in Computer Science,
6449, Springer Verlag, 2011; 102-115.

REDUCING COMMUNICATION IN ALGEBRAIC MULTIGRID USING ADDITIVE VARIANTS27

[6] J. Bramble, J. Pasciak, and J. Xu, “Parallel Multilevel Preconditioners,” Mathematics of Com-
putation 55 (1990), pp. 1-2.

[7] Tony F. Chan and Ray S. Tuminaro, “Design and Implementation of Parallel Multigrid Algo-
rithms”, in Steve F. McCormick (ed.), Multigrid Methods: Theory, Applications, and Super-
computing, Marcel Dekker, New York, 1988, pp. = 101–115.

[8] Tony F. Chan and Ray S. Tuminaro, “Analysis of a Parallel Multigrid Algorithm”, in eds. J.
Mandel, S. McCormick, J. E. Dendy, C. Farhat, G. Lonsdale, S. Parter, J. Ruge, K. Stüben
(eds.), Proceedings of the Fourth Copper Mountain Conference on Multigri d Methods, SIAM,
Philadelphia, 1989, p. = 66–86.

[9] H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing Complexity in Parallel Algebraic Multigrid
Preconditioners,” SIAM J. on Matrix Analysis and Applications 27 (2006), pp. 1019-1039.

[10] H. de Sterck, R. Falgout, J. Nolting, and U.M. Yang, “Distance-Two Interpolation for Parallel
Algebraic Multigrid,” Numer. Linear Algebra Appl. 15 (2008), pp. 115-139.

[11] R. D. Falgout, J. E. Jones, and U. M. Yang, “Pursuing Scalability for hypre’s Conceptual
Interfaces,” ACM Trans. Math Softw. 31(2005), pp. 326-350.

[12] Gahvari H, Baker A, Schulz M, Yang UM, Jordan K, Gropp W, Modeling the Performance of
an Algebraic Multigrid Cycle, in Proceedings of the 25th International Conference on Super-
computing, 2011, Tucson, AZ, ACM, 2011; 172-181.

[13] L. Fournier and S. Lanteri, Multiplicative and additive parallel multigrid algorithms for the ac-
celeration of compressible flow computations on unstructured meshes, Applied Numerical Math-
ematics, 36, (2001), p. = 401–426

[14] A. Greenbaum, “A Multigrid Method for Multiprocessors,” Applied Mathematics and Compu-
tation 19(1986), pp. 75-88.

[15] hypre: High Performance Preconditioners. http://www.llnl.gov/CASC/linear solvers/.
[16] V. Henson, U. M. Yang, BoomerAMG: a Parallel Algebraic Multigrid Solver and Preconditioner,

Applied Numerical Mathematics 41 (2002) 155–177.
[17] Kolev TV, Vassilevski PS, Parallel Auxiliary Space AMG for H(curl) Problems, Journal of

Computational Mathematics 2009; 27; 604-623.
[18] Lesley R. Matheson and Robert E. Tarjan, “Parallelism in Multigrid Methods: How Much Is

Too Much?”, International Journal of Parallel Programming, 24 (1996), pp. = 397–432.
[19] MFEM Finite Element Discretization Library, code.google.com/p/mfem/ .
[20] K. Stüben, Algebraic multigrid (AMG): an introduction with applications, in : U. Trottenberg,

C. Oosterlee and A. Schüller, eds., Multigrid (Academic Press, 2000).
[21] Ray S. Tuminaro, “A Highly Parallel Multigrid-Like Method for the Solution of the Euler Equa-

tions”, SIAM Journal on Scientific and Statistical Computing, 13 (1992), pp = 88–100.
[22] Vampir 8.0, http://www.vampir.eu .
[23] Panayot S. Vassilevski, “Multilevel Block Factorization Preconditioners, Matrix-

based Analysis and Algorithms for Solving Finite Element Equations,” Springer, New York,
2008. 514 p.

[24] U. M. Yang, “On Long Range Interpolation Operators for Aggressive Coarsening,” Numer.
Linear Algebra Appl. 17 (2010), pp. 453-472.

